Scientists Identify Agent That Can Block Fibrosis of the Skin and Lungs PDF Print E-mail
Thursday, 31 May 2012 07:22
Researchers at the University of Pittsburgh School of Medicine have identified an agent that in lab tests protected the skin and lungs from fibrosis, a process that can ultimately end in organ failure and even death because the damaged tissue becomes scarred and can no longer function properly. The findings were published yesterday in Science Translational Medicine.

There are no effective therapies for life-threatening illnesses such as idiopathic pulmonary fibrosis and systemic sclerosis, which cause progressive organ scarring and failure, said senior author Carol A. Feghali-Bostwick, Ph.D., associate professor, Division of Pulmonary, Allergy and Critical Care Medicine, and co-Director of the Scleroderma Center, Pitt School of Medicine.

"It's estimated that tissue fibrosis contributes to 45 percent of all deaths in developed countries because organ failure is the final common pathway for numerous diseases," she said. "Identifying a way to stop this process from happening could have enormous impact on mortality and quality of life."

The research team evaluated E4, a piece of protein or peptide derived from endostatin, a component of collagen known for its inhibition of new blood vessel growth. In lab tests, healthy human skin cells that were treated to become fibrotic remained normal when E4 was present. The skin and lungs of mice were protected from cell death and tissue scarring by a single injection of E4 administered five or eight days after they were given the cancer drug bleomycin, which is known to induce fibrosis. The peptide also could reverse scarring that had already occurred, the researchers found.

In a unique approach, the investigators also tested E4 in human skin maintained in the laboratory to confirm it would be effective in treating fibrosis in a human tissue. E4 blocked new and ongoing fibrosis in human skin.

The agent might work by stalling the cross-linking of collagen needed to form thick scars, Dr. Feghali-Bostwick said. While the body naturally produces endostatin, it appears that it cannot make sufficient amounts to counteract fibrosis development in some diseases.

"This endostatin peptide passes two important hurdles that suggest it is a promising candidate drug for development for patients with idiopathic pulmonary fibrosis and systemic sclerosis" said Mark T. Gladwin, M.D., chief, Division of Pulmonary, Allergy and Critical Care Medicine at UPMC and Pitt. "It reverses established disease in animal models and it reverses fibrosis in the human skin fibrosis model."

In a case of serendipity, the researchers discovered E4 while exploring the process of fibrosis. Post-doctoral fellow and study co-author Yukie Yamaguchi, M.D., Ph.D., was conducting some experiments with proteins thought to facilitate the scarring process.

"Dr. Yamaguchi showed me the tests that showed endostatin wasn't working to increase fibrosis, but in fact shut it down," Dr. Feghali-Bostwick said. "It was the opposite of what we expected and I was very excited about our finding. As Louis Pasteur once said, 'chance favors the prepared mind.'"

Source: MedicalExpress (2012), "Scientists identify agent that can block fibrosis of skin, lungs";
 
More articles :

» Biomarker Shows Promise In Scleroderma

A biomarker that can be used to screen patients for has shown promise in a proof of concept study. Researchers from St Vincent’s in Melbourne found (ADMA) levels had an acceptable high specificity and sensitivity for detecting the complication,...

» Scleroderma Drug In Development

According to , has partnered with , the health care investment arm of Morgan Keegan and Co. Inc., to jump-start a capital campaign to raise $12 million to $15 million. ArGentis shelved the campaign last year when the economy soured.The money will...

» NeoStem Awarded Grant To Develop New Treatment for Skin Wounds In Scleroderma

NeoStem, as a leader in the emerging cellular therapy industry, announced that it had received an award under the Small Business Innovative Research Program of $147,765 for the “Development of Adult Pluripotent Very Small Embryonic Like (VSEL)...

» The Vascular Microenvironment and Systemic Sclerosis

Tracy Frech, Nathan Hatton, Boaz Markewitz, Mary Beth Scholand, Richard Cawthon, Amit Patel, and Allen SawitzkeReceived 5 April 2010; Revised 28 May 2010; Accepted 6 July 2010The role of the vascular microenvironment in the pathogenesis Systemic...

» Women and Autoimmunity

50:1, 9:1, 2:1 these are just some ratios of autoimmune disease disparities between women and men. The Society for Women’s Health Research (SWHR) hosted the Capitol Hill briefing, The War Within: Women and Autoimmunity, on Tuesday, October 11 to...

» Modulation of Fibrosis in Systemic Sclerosis by Nitric Oxide and Antioxidants

Systemic sclerosis is a multisystem, connective tissue disease of unknown aetiology characterized by vascular dysfunction, autoimmunity, and enhanced fibroblast activity resulting in fibrosis of the skin, heart, and lungs, and ultimately internal...