Causes Found for Stiff Skin Conditions PDF Print E-mail
Thursday, 18 March 2010 19:28
By studying the genetics of a rare inherited disorder called stiff skin syndrome, researchers at the Johns Hopkins University School of Medicine have learned more about scleroderma, a condition affecting about one in 5,000 people that leads to hardening of the skin as well as other debilitating and often life-threatening problems. The findings, which appear this week in Science Translational Medicine, open doors to testing new treatments.

"Scleroderma is a common and often devastating condition yet its cause remains mysterious. My greatest hope is that this work will facilitate the development of new and better treatments," says Harry C. Dietz, M.D., the Victor A. McKusick Professor of Genetics and director of the Johns Hopkins William S. Smilow Center for Marfan Syndrome Research.

Also known as systemic sclerosis, scleroderma generally affects previously healthy young adults, causing scarring of skin and internal organs that can lead to heart and lung failure. "Most often individuals with scleroderma do not have other affected family members, precluding use of genetic techniques to map the underlying genes. Instead we turned to a rare but inherited form of isolated skin fibrosis called stiff skin syndrome, hoping to gain a foothold regarding cellular mechanisms that might prove relevant to both conditions," says Dietz.

A number of clues led Dietz and his team to strongly suspect a role for the connective tissue protein fibrillin-1 in these skin conditions. First, excess collagen is a hallmark feature of both stiff skin syndrome and scleroderma. While studying Marfan syndrome, a condition caused by a deficiency of fibrillin-1, the researchers discovered that fibrillin-1 regulates the activity of TGFbeta, a molecule that induces cells to make more collagen. Second, other researchers have shown that duplication of a segment within the fibrillin-1 gene is associated with skin fibrosis in mice. And third, Dietz treated a patient at Johns Hopkins who had both stiff skin syndrome and eye problems associated with Marfan syndrome. "This seemed too much of a coincidence," he says.

So Dietz's team examined patients with stiff skin syndrome and found them to have excessive amounts of fibrillin-1 in the skin. The researchers then sequenced the fibrillin-1 gene in these same patients and found all the stiff skin syndrome mutations clustered in a single region of the fibrillin-1 protein known to interact with neighboring cells. Further examination showed that these mutations prevent fibrillin-1 from interacting with neighboring cells and lead to increased amounts and activity of TGFbeta, which causes excessive collagen outside cells.

The researchers then examined biopsies from patients with scleroderma and found all of the abnormalities seen in stiff skin syndrome. "It appears that fibriillin-1 helps to inform cells about the quality of their surroundings and also provides a mechanism - by concentrating TGFbeta - to induce extra cellular matrix production if the cell senses a deficiency," says Dietz. "A breakdown in signaling coupled with excessive fibrillin-1 and TGFbeta leads to a perfect storm for skin fibrosis in stiff skin syndrome."

While it remains unknown what triggers similar molecular events in scleroderma, these findings do suggest a number of potential treatment strategies, says Dietz.

This study was funded by the Scleroderma Research Foundation, Howard Hughes Medical Institute, Smilow Center for Marfan Syndrome Research, National Marfan Foundation, the National Institutes of Health and Shriners Hospital for Children.

Source: Ascribe
 
More articles :

» The Role of Intravenous Immunoglobulin Preparations in the Treatment of Systemic Sclerosis

Marta Baleva and Krasimir NikolovReceived 12 June 2011; Revised 28 August 2011; Accepted 28 August 2011Scleroderma is progressive autoimmune disease associated with severe disability. The major underlying pathological process in scleroderma is...

» Autoimmune Disease Symptoms To Look Out For

We have understood for  a long time that the detection and subsequent diagnoses of autoimmune diseases are difficult. However, there are key rheumatic and physical indicators such as joint pain and fatigue, fevers, increasing skin conditions,...

» Study Reveals New Genetic Link To Scleroderma

An international research consortium including scientists from T (UTHealth) has identified a new genetic link to the systemic form of . Researchers believe a thorough understanding of the genetic nature of the disease is crucial to developing a...

» Genetics of Scleroderma: Implications For Personalized Medicine

Significant advances have been made in understanding the genetic basis of systemic sclerosis (scleroderma) in recent years. Can these discoveries lead to individualized monitoring and treatment? Besides robustly replicated genetic susceptibility...

» GERD and Scleroderma

is an autoimmune disease that causes the skin, and sometimes other organs of the body, to become hard and thick. In the diffuse form of scleroderma, the esophagus and gastrointestinal tract are often affected. GERD, or gastroesophageal reflux...

» Endothelin Receptor Antagonists for the Treatment of Raynaud’s Phenomenon and Digital Ulcers in Systemic Sclerosis

Kait Arefiev, David F. Fiorentino, and Lorinda ChungDivision of Immunology and Rheumatology, Departments of Dermatology and Medicine, Stanford University School of Medicine, Palo Alto VA Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304,...